Zhou W., Johnson K.L., Mortensen R.D, and Erickson D.L. 2012. Gene expression analysis of Xenopsylla cheopis fleas suggests a role for reactive oxygen species in response to Yersinia pestis infection. J. Med. Entomol 49:364-370. (PDF)

Erickson D.L., Russell C.W., Johnson K.L., Hileman T., and Stewart R.M. 2011. PhoP and OxyR transcriptional regulators contribute to Yersinia pestis virulence and survival within Galleria mellonella. Microbial Pathogenesis 51:389-95. (PDF)

Vogt S.L., Green C., Stevens K.M., Day B., Erickson D.L., Woods D.E. and Storey D.G. 2011. The stringent response is essential for Pseudomonas aeruginosa virulence in the rat lung agar bead and Drosophila melanogaster feeding models of infection. Infect. Immun. 79:4094-104.

Erickson D.LAnderson N.A., Cromar L.M., Jolley A.,2009. Bacterial Communities Associated with Flea Vectors of Yersinia pestis. J. Med. Entomol. 46:1532-1536. (PDF)

Erickson D.L., Jarrett C.O., Callison J.A., Fischer E.R., and Hinnebusch B.J.. 2008.  Loss of a biofilm-inhibiting glycosyl hydrolase during the emergence of Yersinia pestis. J. Bacteriol. 190:8163-70. (PDF)

Hinnebusch B.J. and Erickson D.L.  2008. Yersinia pestis biofilm in the flea vector and its role in the transmission of plague. Curr. Top. Microbiol. Immunol. 322:229-48. (PDF)

Erickson D.L., Waterfield N.R., Vadyvaloo V., Long, D., Fischer E.R.., Ffrench-Constant R.H., and Hinnebusch B.J.  2007. Acute oral toxicity of Yersinia pseudotuberculosis towards Xenopsylla cheopis: implications for the evolution of flea-borne transmission of Yersinia pestis. Cell. Microbiol. 9:2658-66.